
Learning First Order Rules

Lecture Outline:

• Why Learn First Order Rules?

• First Order Logic: Terminology

• The FOIL Algorithm

Reading:

Chapter 10.4-5 of Mitchell

COM3250 / 6170 1 2010-2011

Why Learn First Order Rules?

• Propositional logic allows the expression of individual propositions and their truth-functional

combination.

– E.g. propositions likeTom is a man or All men are mortal may be represented by single

proposition letters such asP or Q (so, proposition letters may be viewed as variables which

range over propositions)

– Truth functional combinations are built up using connectives, such as∧, ∨, ¬,→ – e.g.

P∧Q

– Inference rules are defined over propositional forms – e.g.

P→ Q

P

Q

– Note that ifP is Tom is a man andQ is All men are mortal, then the inference thatTom is

mortal doesnot follow in propositional logic

COM3250 / 6170 2 2010-2011

Why Learn First Order Rules?

• First order logic allows the expression of propositions andtheir truth functional combination,

but it also allows us to represent propositions as assertions of predicates about individuals or

sets of individuals

– E.g. propositions likeTom is a man or All men are mortal may be represented by

predicate-argument representations such asman(tom) or ∀x(man(x)→ mortal(x))

(so, variables range over individuals)

– Inference rules permit conclusions to be drawn about sets/individuals – e.g.mortal(tom)

COM3250 / 6170 3 2010-2011

Why Learn First Order Rules? (cont)

• First order logic is much moreexpressive than propositional logic – i.e. it allows a finer-grain
of specification and reasoning when representing knowledge

• In the context of machine learning, consider learning therelational conceptdaughter(x,y)
defined over pairs of personsx, y, where

– persons are represented by attributes:〈Name,Mother,Father,Male,Female〉

COM3250 / 6170 4 2010-2011

Why Learn First Order Rules? (cont)

• First order logic is much moreexpressive than propositional logic – i.e. it allows a finer-grain
of specification and reasoning when representing knowledge

• In the context of machine learning, consider learning therelational conceptdaughter(x,y)
defined over pairs of personsx, y, where

– persons are represented by attributes:〈Name,Mother,Father,Male,Female〉

• Training examples then have the form:〈person1, person2, target attribute value〉

E.g. 〈〈Name1 = Ann,Mother1 = Sue,Father1 = Bob,Male1 = F,Female1 = T 〉

〈Name2 = Bob,Mother2 = Gill,Father2 = Joe,Male2 = T,Female2 = F〉

Daughter1,2 = T 〉

COM3250 / 6170 4-a 2010-2011

Why Learn First Order Rules? (cont)

• First order logic is much moreexpressive than propositional logic – i.e. it allows a finer-grain
of specification and reasoning when representing knowledge

• In the context of machine learning, consider learning therelational conceptdaughter(x,y)
defined over pairs of personsx, y, where

– persons are represented by attributes:〈Name,Mother,Father,Male,Female〉

• Training examples then have the form:〈person1, person2, target attribute value〉

E.g. 〈〈Name1 = Ann,Mother1 = Sue,Father1 = Bob,Male1 = F,Female1 = T 〉

〈Name2 = Bob,Mother2 = Gill,Father2 = Joe,Male2 = T,Female2 = F〉

Daughter1,2 = T 〉

• From such examples, a propositional rule learner such as ID3or CN2 can only learn rules like:

IF (Father1 = Bob)∧ (Name2 = Bob)∧ (Female1 = T)

THEN Daughter1,2 = T

This will not be useful in classifying future pairs of persons.

COM3250 / 6170 4-b 2010-2011

Why Learn First Order Rules? (cont)

• First order logic is much moreexpressive than propositional logic – i.e. it allows a finer-grain
of specification and reasoning when representing knowledge

• In the context of machine learning, consider learning therelational conceptdaughter(x,y)
defined over pairs of personsx, y, where

– persons are represented by attributes:〈Name,Mother,Father,Male,Female〉

• Training examples then have the form:〈person1, person2, target attribute value〉

E.g. 〈〈Name1 = Ann,Mother1 = Sue,Father1 = Bob,Male1 = F,Female1 = T 〉

〈Name2 = Bob,Mother2 = Gill,Father2 = Joe,Male2 = T,Female2 = F〉

Daughter1,2 = T 〉

• From such examples, a propositional rule learner such as ID3or CN2 can only learn rules like:

IF (Father1 = Bob)∧ (Name2 = Bob)∧ (Female1 = T)

THEN Daughter1,2 = T

This will not be useful in classifying future pairs of persons.

• In contrast, a first order rule learner can learn the rule:

IF Father(y,x)∧Female(y) THEN Daughter(x,y)

COM3250 / 6170 4-c 2010-2011

Why Learn First Order Rules? (cont)

• Consider another example. Suppose we want to learn the concept of “standing block”.

• Training instances are represented by 3 attributes:height, width, number of sides.

• In the following data the blue blocks are standing, red ones lying.

• In propositional learning we can test the values of one or more attributes against constants. E.g.

– IF height(block)> 2 THEN standing– doesn’t work (examples 3 and 5)

– IF height(block)> 2 and width(block)< 2 THEN standing– doesn’t work (example 3)

• Can learn rules to cover any given finite dataset (effectively learning rules for just these cases),
but no test against specific attribute values can capture thegeneralization we want

• Test we want is:IF height(block)> width(block) THEN standing

• Propositional learners cannot capture suchrelations between attributes

COM3250 / 6170 5 2010-2011

Why Learn First Order Rules? (cont)

• First order rule learners can generalise over relational concepts (which propositional learners

cannot).

• In addition, first order rule learners can also acquirerecursive rules, e.g.:

IF Parent(x,y) THEN Ancestor(x,y)

IF Parent(x,z)∧Ancestor(z,y) THEN Ancestor(x,y)

Note, that variables may be introduced in the rule preconditions that do not occur in the

postconditions (z in this case)

• Since the rules (Horn clauses) that are learnt by first rule learners are the same form as rules in

logic programming languages such as Prolog, such rule learning is calledinductive logic
programming (ILP)

COM3250 / 6170 6 2010-2011

First Order Logic: Terminology

• All expressions in first order logic are composed of:

– constants – e.g.bob, 23,a

– variables – e.g.X ,Y,Z

– predicate symbols – e.g.f emale, f ather – predicates take on the valuesTrue or False only

– function symbols – e.g.age – functions can take on any constant as a value

– connectives – e.g.∧, ∨, ¬,→ (or←)

– quantifiers – e.g.∀, ∃

COM3250 / 6170 7 2010-2011

First Order Logic: Terminology

• All expressions in first order logic are composed of:

– constants – e.g.bob, 23,a

– variables – e.g.X ,Y,Z

– predicate symbols – e.g.f emale, f ather – predicates take on the valuesTrue or False only

– function symbols – e.g.age – functions can take on any constant as a value

– connectives – e.g.∧, ∨, ¬,→ (or←)

– quantifiers – e.g.∀, ∃

• A term is

– any constant – e.g.bob

– any variable – e.gX

– any function applied to any term – e.g.age(bob)

COM3250 / 6170 7-a 2010-2011

First Order Logic: Terminology

• All expressions in first order logic are composed of:

– constants – e.g.bob, 23,a

– variables – e.g.X ,Y,Z

– predicate symbols – e.g.f emale, f ather – predicates take on the valuesTrue or False only

– function symbols – e.g.age – functions can take on any constant as a value

– connectives – e.g.∧, ∨, ¬,→ (or←)

– quantifiers – e.g.∀, ∃

• A term is

– any constant – e.g.bob

– any variable – e.gX

– any function applied to any term – e.g.age(bob)

• A literal is any predicate or negated predicate applied to any terms – e.g. f emale(sue),
¬ f ather(X ,Y)

– A ground literal is a literal that contains no variables – e.g.f emale(sue)

– A positive literal is a literal that does not contain a negated predicate – e.g.f emale(sue)

– A negative literal is a literal that contains a negated predicate – e.g¬ f ather(X ,Y)

COM3250 / 6170 7-b 2010-2011

First Order Logic: Terminology (cont)

• A clauseis any disjunction of literalsM1∨ ·· ·∨Mn whose variables are universally quantified

(with wide scope)

COM3250 / 6170 8 2010-2011

First Order Logic: Terminology (cont)

• A clauseis any disjunction of literalsM1∨ ·· ·∨Mn whose variables are universally quantified

(with wide scope)

• A Horn clause is any clause containing exactly one positive literal:

H ∨¬L1∨ ·· ·∨¬Ln

Since ¬L1∨ ·· ·∨¬Ln ≡ ¬(L1∧ ·· ·∧Ln)

and (A∨¬B)≡ (A← B) (readA← B as “if B then A”)

then a Horn clause can be equivalently written:

H← L1∧ ·· ·∧Ln

Note: the equivalent form in Prolog:H :- L1, ..., Ln.

COM3250 / 6170 8-a 2010-2011

First Order Logic: Terminology (cont)

• A clauseis any disjunction of literalsM1∨ ·· ·∨Mn whose variables are universally quantified

(with wide scope)

• A Horn clause is any clause containing exactly one positive literal:

H ∨¬L1∨ ·· ·∨¬Ln

Since ¬L1∨ ·· ·∨¬Ln ≡ ¬(L1∧ ·· ·∧Ln)

and (A∨¬B)≡ (A← B) (readA← B as “if B then A”)

then a Horn clause can be equivalently written:

H← L1∧ ·· ·∧Ln

Note: the equivalent form in Prolog:H :- L1, ..., Ln.

• A substitution is a functionθ = {x1/t1, ...,xn/tn} which when applied to an expressionC

yields a new expressionC′ with each variablexi in C replaced with termti.

– Cθ denotes the result of applyingθ to C.

– A unifying substitution for two expressionsC1 andC2 is any substitutionθ such that

C1θ = C2θ

COM3250 / 6170 8-b 2010-2011

First Order Rule Learning: FOIL

• FOIL (Quinlan, 1990) is the natural extension of SEQUENTIAL-COVERING and

LEARN-ONE-RULE to first order rule learning.

• FOIL learns first order rules which are similar to Horn clauses with two exceptions:

– literals may not contain function symbols (reduces complexity of hypothesis space)

– literals in body of clause may be negated (hence, more expressive than Horn clauses)

• Like SEQUENTIAL-COVERING, FOIL learns one rule at time and removes positive examples

covered by the learned rule before attempting to learn a further rule.

• Unlike SEQUENTIAL-COVERING and LEARN-ONE-RULE, FOIL

– only tries to learn rules that predict when the target literal is true – propositional version

sought rules that predicted both true and false values of target attribute

– performs a simple hill-climbing search (beam search of width one)

COM3250 / 6170 9 2010-2011

FOIL: Overview

FOIL searches its hypothesis space via two nested loops:

COM3250 / 6170 10 2010-2011

FOIL: Overview

FOIL searches its hypothesis space via two nested loops:

• Theouter loop at each iteration adds a new rule to an overall disjunctive hypothesis (i.e.

rule1∨ rule2∨ ...)

This loop may be viewed as a specific-to-general search

– starting with the empty disjunctive hypothesis which covers no positive instances

– stopping when the hypothesis is general enough to cover all positive examples

COM3250 / 6170 10-a 2010-2011

FOIL: Overview

FOIL searches its hypothesis space via two nested loops:

• Theouter loop at each iteration adds a new rule to an overall disjunctive hypothesis (i.e.

rule1∨ rule2∨ ...)

This loop may be viewed as a specific-to-general search

– starting with the empty disjunctive hypothesis which covers no positive instances

– stopping when the hypothesis is general enough to cover all positive examples

• The inner loop works out the detail of each specific rule, adding conjunctive constraints to the

rule precondition on each iteration.

This loop may be viewed as a general-to-specific search

– starting with the most general precondition (empty)

– stopping when the hypothesis is specific enough to exclude all negative examples

COM3250 / 6170 10-b 2010-2011

FOIL: Algorithm

FOIL(Target predicate,Predicates,Examples)

• Pos← positiveExamples

• Neg← negativeExamples

• Learned rules←{}

• while Pos, do

Learn a NewRule

– NewRule← most general rule possible (no preconditions)

– NewRuleNeg← Neg

– while NewRuleNeg, do

Add a new literal to specialize NewRule

1. Candidate literals← generate candidates based onPredicates

2. Best literal←

argmaxL∈Candidate literals Foil Gain(L,NewRule)

3. addBest literal to NewRule preconditions

4. NewRuleNeg← subset ofNewRuleNeg that satisfiesNewRule preconditions

– Learned rules← Learned rules+NewRule

– Pos← Pos − {members ofPos covered byNewRule}

• ReturnLearned rules

COM3250 / 6170 11 2010-2011

FOIL: Explanation

The principal differences between FOIL and SEQUENTIAL-COVERING + LEARN-ONE-RULE

are:

• In its inner loop search to generate each new rule, FOIL needsto cope with variables in the

rule preconditions

• The performance measure used in FOIL is not the entropy measure used in

LEARN-ONE-RULE since

– the performances of distinct bindings of rule variables need to be distinguished

– FOIL only tries to discover rules that cover positive examples

COM3250 / 6170 12 2010-2011

FOIL: Specialising the Current Rule

• Suppose we are learning a rule of the form:

P(x1,x2, . . . ,xk)← L1 . . .Ln

• Then candidate specialisations add a new literal of the form:

– Q(v1, . . . ,vr), where

∗ Q is any predicate in the rule or training data;

∗ at least one of thevi in the created literal must already exist as a variable in therule

– Equal(x j,xk), wherex j andxk are variables already present in the rule; or

– The negation of either of the above forms of literals

COM3250 / 6170 13 2010-2011

FOIL: Specialising the Current Rule – Example

Suppose we are trying to learngranddaughter(X ,Y), given instances described by the predicates
f ather and f emale:

• FOIL starts with the most general rule:

granddaughter(X ,Y)←

• The above procedure generates candidate additional literals:

equal(X ,Y), f emale(X), f emale(Y), f ather(X ,Y), f ather(Y,X),

f ather(X ,Z), f ather(Z,X), f ather(Y,Z), f ather(Z,Y)

plus the negations of each of these

• Suppose FOIL now choosesf ather(Y,Z) as most promising:

granddaughter(X ,Y)← f ather(Y,Z)

• New candidate literals to specialise this rule include those from above, plus

equal(Z,X),equal(Z,Y), f emale(Z), f emale(Y), f ather(Z,W), f ather(W,Z)

plus their negations

COM3250 / 6170 14 2010-2011

FOIL: Specialising the Current Rule – Example (cont)

• If FOIL next selectsf ather(Z,X), then f emale(Y) the rule

granddaughter(X ,Y)← f ather(Y,Z)∧ f ather(Z,X)∧ f emale(Y)

is generated.

• Assuming this rule covers only positive examples, no more specialisations for the current rule

are sought.

If more positive examples remain, search for another rule begins.

COM3250 / 6170 15 2010-2011

FOIL: Performance Evaluation Measure

• How do we decide which is the best literal to add when specialising a rule?

• To do this FOIL considers each possible binding of variablesin the candidate rule
specialisation to constants in the training examples.

• For example, suppose we have the training data:

granddaughter(bill, joan) f ather(joan, joe) f ather(tom, joe)

f emale(joan) f ather(joe,bill)

and we also assume (“closed world assumption”) that any literals

– involving predicatesgranddaughter, f ather, and f emale

– involving constantsbill, joan, joe, andtom

– not in the training data

are false. E.g.¬granddaughter(bill, tom) is also true.

• Given the initial rule:granddaughter(X ,Y)←

FOIL considers all possible bindings ofX andY to the constantsbill, joan, joe, andtom.

Note that only{X/bill,Y/ joan} is a positive binding (i.e. corresponds to a positive training
example). The other 15 bindings of constants toX andY are negative.

COM3250 / 6170 16 2010-2011

FOIL: Performance Evaluation Measure (cont)

• At each stage of rule specialisation, candidate specialisations are preferred according to

whether they possess more positive and fewer negative bindings.

• The precise evaluation measure used by FOIL is:

Foil Gain(L,R)≡ t

(

log2
p1

p1 +n1
− log2

p0

p0 +n0

)

Where

– L is the candidate literal to add to ruleR

– p0 = number of positive bindings ofR

– n0 = number of negative bindings ofR

– p1 = number of positive bindings ofR+L

– n1 = number of negative bindings ofR+L

– t is the number of positive bindings ofR also covered byR+L

COM3250 / 6170 17 2010-2011

FOIL: Performance Evaluation Measure (cont)

• Note, in information-theoretic terms:

– − log2
p0

p0+n0
is minimum number of bits to encode the classification of a positive binding

covered byR

– − log2
p1

p1+n1
is minimum number of bits to encode the classification of a positive binding

covered byR+L

– t is number of positive bindings covered byR that remain covered byR+L

– So,Foil Gain(R,L) is reduction due toL in total number of bits required to encode the

classification of all positive bindings ofR

COM3250 / 6170 18 2010-2011

FOIL: Summary/Observations

• FOIL extends the SEQUENTIAL-COVERING and LEARN-ONE-RULE algorithms for

propositional rule learning to first order rule learning

COM3250 / 6170 19 2010-2011

FOIL: Summary/Observations

• FOIL extends the SEQUENTIAL-COVERING and LEARN-ONE-RULE algorithms for

propositional rule learning to first order rule learning

• FOIL learns in two phases:

– an outer loop which acquires a disjunction of Horn clause-like rules which together cover

the positive examples

– an inner loop which constructs individual rules by progressive specialisation of a rule

through adding new literals selected according to the FOIL-gain measure until no negative

examples are covered

COM3250 / 6170 19-a 2010-2011

FOIL: Summary/Observations

• FOIL extends the SEQUENTIAL-COVERING and LEARN-ONE-RULE algorithms for

propositional rule learning to first order rule learning

• FOIL learns in two phases:

– an outer loop which acquires a disjunction of Horn clause-like rules which together cover

the positive examples

– an inner loop which constructs individual rules by progressive specialisation of a rule

through adding new literals selected according to the FOIL-gain measure until no negative

examples are covered

• The literals introduced in the rule preconditions are drawnfrom the attributes used in

describing the training examples

– Variables used in new literals may be those occurring already in the rule

pre-/postconditions, or they may be new

– If the new literal is allowed to use the target predicate thenrecursive rules may be learned

In this case special care must be taken to avoid learning rulesets that produce infinite

recursion

COM3250 / 6170 19-b 2010-2011

FOIL: Summary/Observations

• FOIL can add literals until no negative examples are coveredonly in the case of noise-free

data – otherwise some other strategy must be adopted

– Quinlan proposed use of a minimum description length measure to stop rule extension

when the description length of rules exceeds that of the training data they explain

COM3250 / 6170 20 2010-2011

