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e Why Learn First Order Rules?

Lecture Outline;

e First Order Logic: Terminology

e The FOIL Algorithm

Reading:
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Why Learn First Order Rules?

e Propositional logic allows the expression of individuabpositions and their truth-functional
combination.

— E.qg. propositions likdomis a man or All men are mortal may be represented by single
proposition letters such d&sor Q (so, proposition letters may be viewed as variables which
range over propositions)

— Truth functional combinations are built up using connextivsuch as, v, -, — —e.qg.
PAQ

— Inference rules are defined over propositional forms — e.g.
P—Q
P
Q

— Note that ifP is Tomisa man andQ is All men are mortal, then the inference thdbmis
mortal doesnot follow in propositional logic
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Why Learn First Order Rules?

e First order logic allows the expression of propositions #radr truth functional combination,
but it also allows us to represent propositions as asssertbpredicates about individuals or
sets of individuals

— E.g. propositions likdomisa man or All men are mortal may be represented by
predicate-argument representations suammagtom) or Vx(man(x) — mortal (X))
(so, variables range over individuals)

— Inference rules permit conclusions to be drawn about selisiduals — e.gmortal (tom)
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Why Learn First Order Rules? (cont)

e First order logic is much morexpressive than propositional logic —i.e. it allows a finer-grain
of specification and reasoning when representing knowledge

¢ In the context of machine learning, consider learningrthetional concepdaughter (x,y)
defined over pairs of persomgsy, where
— persons are represented by attribut®&ame, Mother, Father, Mal e, Femal e)
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Why Learn First Order Rules? (cont)

e First order logic is much morexpressive than propositional logic —i.e. it allows a finer-grain
of specification and reasoning when representing knowledge

¢ In the context of machine learning, consider learningréhational concepdaughter (x,y)
defined over pairs of persomgsy, where

— persons are represented by attribut®&ame, Mother, Father, Mal e, Femal e)

e Training examples then have the forfuer son;, person,,target_attribute val ue)

E.g. ((Name; = Ann,Mother, = Sue, Father; = Bob,Male; = F,Female; =T)

(Name, = Bob, Mother, = Gill, Father, = Joe, Male; = T,Female; = F)
Daughteri2=T)
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Why Learn First Order Rules? (cont)

First order logic is much morexpressive than propositional logic — i.e. it allows a finer-grain
of specification and reasoning when representing knowledge

¢ In the context of machine learning, consider learningréhational concepdaughter (x,y)
defined over pairs of persomgsy, where

— persons are represented by attribut®&ame, Mother, Father, Mal e, Femal e)

Training examples then have the forfmerson;, persony, target_attribute val ue)

E.g. ((Name; = Ann,Mother, = Sue, Father; = Bob,Male; = F,Female; =T)
(Name, = Bob, Mother, = Gill, Father, = Joe, Male; = T,Female; = F)
Daughteri2=T)

From such examples, a propositional rule learner such agit@N2 can only learn rules like:

IF (Father; = Bob) A (Name, = Bob) A (Female; =T)
THEN Daughteri, =T

This will not be useful in classifying future pairs of person
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Why Learn First Order Rules? (cont)

e First order logic is much morexpressive than propositional logic —i.e. it allows a finer-grain
of specification and reasoning when representing knowledge

¢ In the context of machine learning, consider learningréhational concepdaughter (x,y)
defined over pairs of persomgsy, where

— persons are represented by attribut®&ame, Mother, Father, Mal e, Femal e)
e Training examples then have the forfuer son;, person,,target_attribute val ue)
E.g. ((Name; = Ann,Mother, = Sue, Father; = Bob,Male; = F,Female; =T)
(Name, = Bob, Mother, = Gill, Father, = Joe, Male; = T,Female; = F)
Daughteri2=T)
e From such examples, a propositional rule learner such agtl@N2 can only learn rules like:
IF (Father; = Bob) A (Name, = Bob) A (Female; =T)
THEN Daughteri, =T
This will not be useful in classifying future pairs of person

e In contrast, a first order rule learner can learn the rule:

IF Father(y,x) A Female(y) THEN Daughter(X,y)
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Why Learn First Order Rules? (cont)

e Consider another example. Suppose we want to learn the gboicestanding block”.
e Training instances are represented by 3 attributeght, width, number of sides.

¢ In the following data the blue blocks are standing, red oyies)|

¢ In propositional learning we can test the values of one orematiributes against constants. E.g.
— IF height(block)> 2 THEN standing- doesn’t work (examples 3 and 5)
— IF height(block)> 2 and width(blockk 2 THEN standing- doesn’t work (example 3)

e Can learn rules to cover any given finite dataset (effectilerning rules for just these cases),
but no test against specific attribute values can capturgegheralization we want

e Test we want isiF height(block)> width(block) THEN standing

e Propositional learners cannot capture sihtions between attributes
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Why Learn First Order Rules? (cont)

e First order rule learners can generalise over relationatepts (which propositional learners
cannot).

e In addition, first order rule learners can also acquii®irsiverules, e.g.:

IF Parent(x,y) THEN Ancestor(x,y)
IF Parent(x,z) A Ancestor (z,y) THEN Ancestor (X,Y)

Note, that variables may be introduced in the rule precanttthat do not occur in the
postconditionsZin this case)

e Since the rules (Horn clauses) that are learnt by first r@dmiers are the same form as rules in
logic programming languages such as Prolog, such ruleifearmmcalledinductive logic
programming (ILP)
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First Order Logic: Terminology

e All expressions in first order logic are composed of:
— constants — e.dob, 23,a
— variables—e.gX,Y.Z
— predicate symbols — e.demale, father — predicates take on the valuEsue or Fal se only
— function symbols — e.cage — functions can take on any constant as a value
— connectives —e.qg\, Vv, -, — (or <)
— quantifiers — e.gv, 4
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First Order Logic: Terminology

e All expressions in first order logic are composed of:
— constants — e.dob, 23,a
— variables—e.gX,Y.Z
— predicate symbols — e.demale, father — predicates take on the valuEsue or Fal se only
— function symbols — e.cage — functions can take on any constant as a value
— connectives —e.qg\, Vv, -, — (or <)
— quantifiers — e.gv, 4
e Atermis
— any constant — e.dnob
— any variable — e.
— any function applied to any term — e .age(bob)
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First Order Logic: Terminology

e All expressions in first order logic are composed of:
— constants — e.dob, 23,a
— variables—e.gX,Y.Z
— predicate symbols — e.demale, father — predicates take on the valuEsue or Fal se only
— function symbols — e.cage — functions can take on any constant as a value
— connectives —e.qg\, Vv, -, — (or <)
— quantifiers — e.gv, 4
e Atermis
— any constant — e.dnob
— any variable — e.
— any function applied to any term — e .age(bob)
e A literal is any predicate or negated predicate applied to any terngs f@nal e(sue),
—father (X,Y)
— A ground literal is a literal that contains no variables — efgmal e(sue)
— A positive literal is a literal that does not contain a negated predicate —fergal e(sue)
— A negative literal is a literal that contains a negated predicate —€.gther (X,Y)
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First Order Logic: Terminology (cont)

e A clauseis any disjunction of literal$1, Vv - - - V M, whose variables are universally quantified
(with wide scope)
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First Order Logic: Terminology (cont)

e A clauseis any disjunction of literal$1, Vv - - - V M, whose variables are universally quantified
(with wide scope)

e A Horn clauseis any clause containing exactly one positive literal:
HvV-LiV---V-ly

Since =L1V---Valbn=—(LiA---ALp)
and (AV-B)= (A<~ B) (readA «— B as “if B then A")
then a Horn clause can be equivalently written:

H«—LiA---ALp

Note: the equivalent form in Prologt : - L1, ..., Ln.
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First Order Logic: Terminology (cont)

e A clauseis any disjunction of literal$1, Vv - - - V M, whose variables are universally quantified
(with wide scope)

e A Horn clauseis any clause containing exactly one positive literal:
HvV-LiV---V-ly

Since =L1V---Valbn=—(LiA---ALp)
and (AV-B)= (A<~ B) (readA «— B as “if B then A")
then a Horn clause can be equivalently written:

H«—LiA---ALp

Note: the equivalent form in Prologt : - L1, ..., Ln.

e A substitution is a functionf = {x1 /t1, ..., Xn/tn} Which when applied to an expressiGn
yields a new expressidlf with each variable; in C replaced with ternt.

— CO denotes the result of applyirtgto C.
— A unifying substitution for two expression€; andC; is any substitutio® such that

C10=0C20
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First Order Rule Learning: FOIL

FOIL (Quinlan, 1990) is the natural extension #@JENTIAL-COVERING and
LEARN-ONE-RULE to first order rule learning.

FOIL learns first order rules which are similar to Horn claigéth two exceptions:

— literals may not contain function symbols (reduces comiplet hypothesis space)

— literals in body of clause may be negated (hence, more exipesthan Horn clauses)

Like SEQUENTIAL-COVERING, FOIL learns one rule at time and removes positive examples
covered by the learned rule before attempting to learn aduarle.

e Unlike SEQUENTIAL-COVERING and LEARN-ONE-RULE, FOIL

— only tries to learn rules that predict when the target litex&rue — propositional version
sought rules that predicted both true and false values gétattribute

— performs a simple hill-climbing search (beam search of waite)
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FOIL: Overview

FOIL searches its hypothesis space via two nested loops:
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FOIL: Overview

FOIL searches its hypothesis space via two nested loops:

e Theouter loop at each iteration adds a new rule to an overall disjunctiymthesis (i.e.
rulepvrulex Vv..)

This loop may be viewed as a specific-to-general search

— starting with the empty disjunctive hypothesis which ceuen positive instances

— stopping when the hypothesis is general enough to coveosiliye examples
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FOIL: Overview

FOIL searches its hypothesis space via two nested loops:
e Theouter loop at each iteration adds a new rule to an overall disjunctiymthesis (i.e.
rulepvrulex Vv..)

This loop may be viewed as a specific-to-general search

— starting with the empty disjunctive hypothesis which ceuen positive instances
— stopping when the hypothesis is general enough to coveosiliye examples
e Theinner loop works out the detail of each specific rule, adding conjumctionstraints to the
rule precondition on each iteration.

This loop may be viewed as a general-to-specific search

— starting with the most general precondition (empty)

— stopping when the hypothesis is specific enough to excludeghtive examples
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FOIL: Algorithm

FOIL(Target_predicate, Predicates, Exampl es)
e Pos« positiveExamples
e Neg «— negativeExampl es
e Learned_rules« {}

e while Pos, do
Learn a NewRule
— NewRule +— most general rule possible (no preconditions)
— NewRuleNeg — Neg

— while NewRuleNeg, do
Add a new literal to specialize NewRul e
1. Candidate literals < generate candidates basedRvedicates
2. Best_literal
argmax ccandidate_literals POl -Gain(L, NewRul e)
3. addBes _literal to NewRule preconditions
4. NewRuleNeg «+ subset oNewRul eNeg that satisfietNewRul e preconditions

— Learned_rules < Learned_rules+ NewRule
— Pos «+ Pos — {members oPos covered byNewRul e}

e ReturnLearned_rules
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FOIL: Explanation

The principal differences between FOIL anH@JENTIAL-COVERING + LEARN-ONE-RULE
are:

e Initsinner loop search to generate each new rule, FOIL niecipe with variables in the
rule preconditions

e The performance measure used in FOIL is not the entropy meased in
LEARN-ONE-RULE since
— the performances of distinct bindings of rule variablesth®ebe distinguished

— FOIL only tries to discover rules that cover positive exaaspl
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FOIL: Specialising the Current Rule

e Suppose we are learning a rule of the form:
P(X1,X2,...,X) < L1...Lp
e Then candidate specialisations add a new literal of the form

— Q(v1,-..,Vr), where
x Qs any predicate in the rule or training data;
x at least one of thg in the created literal must already exist as a variable inruhee

— Equal (xj, xx), wherex; andx are variables already present in the rule; or

— The negation of either of the above forms of literals
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FOIL: Specialising the Current Rule — Example

Suppose we are trying to leagnanddaughter (X,Y), given instances described by the predicates
father and female:

e FOIL starts with the most general rule:

granddaughter (X,Y) «—

e The above procedure generates candidate additionalditera

equal (X,Y), female(X), female(Y), father (X,Y), father (Y, X),
father(X,Z), father(Z,X), father(Y,Z2), father(Z,Y)

plus the negations of each of these

e Suppose FOIL now choosésther (Y,Z) as most promising:
granddaughter (X,Y) «— father(Y,Z2)
e New candidate literals to specialise this rule include ¢hiosm above, plus
equal (Z,X),equal (Z,Y), female(Z), female(Y), father(Z,W), father (W, Z)
plus their negations
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FOIL: Specialising the Current Rule — Example (cont)

e If FOIL next selectsfather (Z,X), thenfemale(Y) the rule
granddaughter (X,Y) « father(Y,Z) A father(Z,X) A female(Y)

IS generated.

e Assuming this rule covers only positive examples, no moeeisfisations for the current rule
are sought.

If more positive examples remain, search for another rujgnise
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FOIL: Performance Evaluation Measure

e How do we decide which is the best literal to add when spemjia rule?

e To do this FOIL considers each possible binding of varialsidee candidate rule
specialisation to constants in the training examples.

e For example, suppose we have the training data:

granddaughter (bill, joan) father(joan, joe) father(tom, joe)

female( joan) father(joe, bill)

and we also assume (“closed world assumption”) that amalge
— involving predicategranddaughter, father, andfemale

— involving constant®ill, joan, joe, andtom

— not in the training data

are false. E.g—granddaughter (bill,tom) is also true.

e Given the initial rule:granddaughter (X,Y) «—
FOIL considers all possible bindings BfandY to the constantsill, joan, joe, andtom.

Note that only{ X /bill,Y /joan} is a positive binding (i.e. corresponds to a positive tragni
example). The other 15 bindings of constantXtandY are negative.
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FOIL: Performance Evaluation Measure (cont)

e At each stage of rule specialisation, candidate speciaisaare preferred according to
whether they possess more positive and fewer negativerigadi

e The precise evaluation measure used by FOIL is:

. . P1 Po
Foil_Gain(L,R)=t|(lo —lo
( ) ( %2 P1+ N1 %2 po+no>

Where
— L is the candidate literal to add to ruke
— Po = humber of positive bindings d?
— Ng = number of negative bindings &
— p1 = number of positive bindings ¢+ L
— n1 = number of negative bindings &+ L

— t is the number of positive bindings &falso covered bR+ L
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FOIL: Performance Evaluation Measure (cont)

e Note, in information-theoretic terms:

— —log, popfno IS minimum number of bits to encode the classification of atjpesbinding

covered byR

— —log, p1p+1n1 IS minimum number of bits to encode the classification of atjpesbinding

covered byR+ L
— t is number of positive bindings covered Bythat remain covered b+ L

— So,Foil_Gain(R,L) is reduction due ta in total number of bits required to encode the
classification of all positive bindings &t
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FOIL: Summary/Observations

e FOIL extends the BQUENTIAL-COVERING and LEARN-ONE-RULE algorithms for
propositional rule learning to first order rule learning
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FOIL: Summary/Observations

e FOIL extends the BQUENTIAL-COVERING and LEARN-ONE-RULE algorithms for
propositional rule learning to first order rule learning

e FOIL learns in two phases:

— an outer loop which acquires a disjunction of Horn clauke+tules which together cover
the positive examples

— an inner loop which constructs individual rules by prognesspecialisation of a rule
through adding new literals selected according to the F@dln measure until no negative
examples are covered
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FOIL: Summary/Observations

e FOIL extends the BQUENTIAL-COVERING and LEARN-ONE-RULE algorithms for
propositional rule learning to first order rule learning

e FOIL learns in two phases:

— an outer loop which acquires a disjunction of Horn clauke+tules which together cover
the positive examples

— an inner loop which constructs individual rules by prognesspecialisation of a rule
through adding new literals selected according to the F@dln measure until no negative
examples are covered

e The literals introduced in the rule preconditions are drénom the attributes used in
describing the training examples

— Variables used in new literals may be those occurring alr@athe rule
pre-/postconditions, or they may be new

— If the new literal is allowed to use the target predicate ttemursive rules may be learned

In this case special care must be taken to avoid learningsaifethat produce infinite
recursion
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FOIL: Summary/Observations

e FOIL can add literals until no negative examples are coverdylin the case of noise-free
data — otherwise some other strategy must be adopted

— Quinlan proposed use of a minimum description length mea®sustop rule extension
when the description length of rules exceeds that of thaitrgidata they explain
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