Version Spaces + Candidate Elimination

Lecture Outline:

- Quick Review of Concept Learning and General-to-Specific Ordering
- Version Spaces
- The Candidate Elimination Algorithm
- Inductive Bias

Reading:
Chapter 2 of Mitchell
Version Spaces

- One limitation of the **FIND-S** algorithm is that it outputs just one hypothesis consistent with the training data – there might be many.

 To overcome this, introduce notion of **version space** and algorithms to compute it.
Version Spaces

- One limitation of the **FIND-S** algorithm is that it outputs just one hypothesis consistent with the training data – there might be many.

To overcome this, introduce notion of **version space** and algorithms to compute it.

- A hypothesis \(h \) is **consistent** with a set of training examples \(D \) of target concept \(c \) if and only if \(h(x) = c(x) \) for each training example \(\langle x, c(x) \rangle \) in \(D \).

\[
\text{Consistent}(h, D) \equiv (\forall \langle x, c(x) \rangle \in D \ h(x) = c(x))
\]
Version Spaces

- One limitation of the **FIND-S** algorithm is that it outputs just one hypothesis consistent with the training data – there might be many.

 To overcome this, introduce notion of **version space** and algorithms to compute it.

- A hypothesis \(h \) is **consistent** with a set of training examples \(D \) of target concept \(c \) if and only if \(h(x) = c(x) \) for each training example \(\langle x, c(x) \rangle \) in \(D \).

 \[
 Consistent(h, D) \equiv (\forall \langle x, c(x) \rangle \in D) \; h(x) = c(x)
 \]

- The **version space**, \(V_{H,D} \), with respect to hypothesis space \(H \) and training examples \(D \), is the subset of hypotheses from \(H \) consistent with all training examples in \(D \).

 \[
 V_{H,D} \equiv \{ h \in H | Consistent(h, D) \}
 \]
Version Spaces

• One limitation of the FIND-S algorithm is that it outputs just one hypothesis consistent with the training data – there might be many.

To overcome this, introduce notion of version space and algorithms to compute it.

• A hypothesis \(h \) is consistent with a set of training examples \(D \) of target concept \(c \) if and only if \(h(x) = c(x) \) for each training example \(\langle x, c(x) \rangle \) in \(D \).

\[
Consistent(h, D) \equiv (\forall \langle x, c(x) \rangle \in D) \ h(x) = c(x)
\]

• The version space, \(V_{S_{H,D}} \), with respect to hypothesis space \(H \) and training examples \(D \), is the subset of hypotheses from \(H \) consistent with all training examples in \(D \).

\[
V_{S_{H,D}} \equiv \{ h \in H | Consistent(h, D) \}
\]

• Note difference between definitions of consistent and satisfies:
 – an example \(x \) satisfies hypothesis \(h \) when \(h(x) = 1 \), regardless of whether \(x \) is +ve or −ve example of target concept
 – an example \(x \) is consistent with hypothesis \(h \) iff \(h(x) = c(x) \)
The **List-Then-Eliminate** Algorithm

- Can represent version space by listing all members.

- Leads to **List-Then-Eliminate** concept learning algorithm:

 1. $\text{VersionSpace} \leftarrow$ a list containing every hypothesis in H
 2. For each training example, $\langle x, c(x) \rangle$
 remove from VersionSpace any hypothesis h for which $h(x) \neq c(x)$
 3. Output the list of hypotheses in VersionSpace

- **List-Then-Eliminate** works in principle, so long as version space is finite.

- However, since it requires exhaustive enumeration of all hypotheses in practice it is not feasible.

- Is there a more compact way to represent version spaces?
The **Candidate-Elimination Algorithm**

- The **Candidate-Elimination** algorithm is similar to **List-Then-Eliminate** algorithm but uses a more compact representation of version space.
 - represents version space by its **most general** and **most specific** members
The Candidate-Elimination Algorithm

- The Candidate-Elimination algorithm is similar to List-Then-Eliminate algorithm but uses a more compact representation of version space.
 - represents version space by its most general and most specific members
- For EnjoySport example Find-S outputs the hypothesis: \(h = \langle Sunny, Warm, ?, Strong, ?, ? \rangle \) which was one of 6 hypotheses consistent with the data.

\[S: \{ \langle Sunny, Warm, ?, Strong, ?, ? \rangle \} \]

\[G: \{ \langle Sunny, ?, ?, Strong, ?, ? \rangle, \langle Sunny, Warm, ?, ?, ?, ? \rangle, \langle ?, Warm, ?, Strong, ?, ? \rangle \} \]
The Candidate-Elimination Algorithm

- The Candidate-Elimination algorithm is similar to List-Then-Eliminate algorithm but uses a more compact representation of version space.
 - represents version space by its most general and most specific members

- For EnjoySport example Find-S outputs the hypothesis: \(h = \langle \text{Sunny, Warm, ?, Strong, ?, ?} \rangle \)
 which was one of 6 hypotheses consistent with the data.

\[
S: \{ \langle \text{Sunny, Warm, ?, Strong, ?, ?} \rangle \}
\]

\[
G: \{ \langle \text{Sunny, ?, ?, ?, ?, ?} \rangle, \langle \text{?, Warm, ?, ?, ?, ?} \rangle \}
\]

- The Candidate-Elimination algorithm represents the version space by recording only the most general members (\(G \)) and its most specific members (\(S \))
 - other intermediate members in general-to-specific ordering can be generated as needed
The Candidate-Elimination Algorithm (cont)

- The **General boundary**, G, of version space $V_{SH,D}$ is the set of its maximally general members.

- The **Specific boundary**, S, of version space $V_{SH,D}$ is the set of its maximally specific members.
The Candidate-Elimination Algorithm (cont)

- The **General boundary**, \(G\), of version space \(V_{SH,D}\) is the set of its maximally general members.

- The **Specific boundary**, \(S\), of version space \(V_{SH,D}\) is the set of its maximally specific members.

- **Version Space Representation Theorem**
 Every member of the version space lies between these boundaries

 \[
 V_{SH,D} = \{ h \in H | (\exists s \in S)(\exists g \in G)(g \geq g h \geq g s) \}
 \]

 where \(x \geq g y\) means \(x\) is more general or equal to \(y\)
 (see Mitchell, p. 32, for proof)
The **Candidate-Elimination Algorithm** (cont)

- The **General boundary**, \(G \), of version space \(V_{S_{H,D}} \) is the set of its maximally general members.

- The **Specific boundary**, \(S \), of version space \(V_{S_{H,D}} \) is the set of its maximally specific members.

- **Version Space Representation Theorem**
 Every member of the version space lies between these boundaries

\[
V_{S_{H,D}} = \{ h \in H | (\exists s \in S)(\exists g \in G)(g \geq_g h \geq_g s) \}
\]

where \(x \geq_g y \) means \(x \) is more general or equal to \(y \)
(see Mitchell, p. 32, for proof)

- Intuitively, **Candidate-Elimination** algorithm proceeds by
 - initialising \(G \) and \(S \) to the maximally general and maximally specific hypotheses in \(H \)
 - considering each training example in turn and
 - using positive examples to drive the maximally specific boundary up
 - using negative examples to drive the maximally general boundary down
The **CANDIDATE-ELIMINATION Algorithm** (cont)

\[
G \leftarrow \text{maximally general hypotheses in } H \\
S \leftarrow \text{maximally specific hypotheses in } H
\]
The **Candidate-Elimination Algorithm** (cont)

\[G \leftarrow \text{maximally general hypotheses in } H \]
\[S \leftarrow \text{maximally specific hypotheses in } H \]

For each training example \(d \), do
The **Candidate-Elimination Algorithm** (cont)

$G \leftarrow$ maximally general hypotheses in H

$S \leftarrow$ maximally specific hypotheses in H

For each training example d, do

- If d is a positive example
The Candidate-Elimination Algorithm (cont)

\[G \leftarrow \text{maximally general hypotheses in } H \]
\[S \leftarrow \text{maximally specific hypotheses in } H \]

For each training example \(d \), do

- If \(d \) is a positive example
 - Remove from \(G \) any hypothesis inconsistent with \(d \)
The Candidate-Elimination Algorithm (cont)

\[G \leftarrow \text{maximally general hypotheses in } H \]
\[S \leftarrow \text{maximally specific hypotheses in } H \]

For each training example \(d \), do

- If \(d \) is a positive example
 - Remove from \(G \) any hypothesis inconsistent with \(d \)
 - For each hypothesis \(s \) in \(S \) that is not consistent with \(d \)
The Candidate-Elimination Algorithm (cont)

\[G \leftarrow \text{maximally general hypotheses in } H \]
\[S \leftarrow \text{maximally specific hypotheses in } H \]

For each training example \(d \), do

- If \(d \) is a positive example
 - Remove from \(G \) any hypothesis inconsistent with \(d \)
 - For each hypothesis \(s \) in \(S \) that is not consistent with \(d \)
 * Remove \(s \) from \(S \)
The **Candidate-Elimination Algorithm** (cont)

$G \leftarrow$ maximally general hypotheses in H

$S \leftarrow$ maximally specific hypotheses in H

For each training example d, do

- If d is a positive example
 - Remove from G any hypothesis inconsistent with d
 - For each hypothesis s in S that is not consistent with d
 * Remove s from S
 * Add to S all minimal generalizations h of s such that
The **Candidate-Elimination Algorithm** (cont)

\[G \leftarrow \text{maximally general hypotheses in } H \]
\[S \leftarrow \text{maximally specific hypotheses in } H \]

For each training example \(d \), do

- If \(d \) is a positive example
 - Remove from \(G \) any hypothesis inconsistent with \(d \)
 - For each hypothesis \(s \) in \(S \) that is not consistent with \(d \)
 * Remove \(s \) from \(S \)
 * Add to \(S \) all minimal generalizations \(h \) of \(s \) such that
 1. \(h \) is consistent with \(d \), and
 2. some member of \(G \) is more general than \(h \)
The Candidate-Elimination Algorithm (cont)

\[G \leftarrow \text{maximally general hypotheses in } H \]
\[S \leftarrow \text{maximally specific hypotheses in } H \]

For each training example \(d \), do

- If \(d \) is a positive example
 - Remove from \(G \) any hypothesis inconsistent with \(d \)
 - For each hypothesis \(s \) in \(S \) that is not consistent with \(d \)
 * Remove \(s \) from \(S \)
 * Add to \(S \) all minimal generalizations \(h \) of \(s \) such that
 1. \(h \) is consistent with \(d \), and
 2. some member of \(G \) is more general than \(h \)
 * Remove from \(S \) any hypothesis that is more general than another hypothesis in \(S \)
The CANDIDATE-ELIMINATION Algorithm (cont)

\[G \leftarrow \text{maximally general hypotheses in } H \]
\[S \leftarrow \text{maximally specific hypotheses in } H \]

For each training example \(d \), do

- If \(d \) is a positive example
 - Remove from \(G \) any hypothesis inconsistent with \(d \)
 - For each hypothesis \(s \) in \(S \) that is not consistent with \(d \)
 * Remove \(s \) from \(S \)
 * Add to \(S \) all minimal generalizations \(h \) of \(s \) such that
 1. \(h \) is consistent with \(d \), and
 2. some member of \(G \) is more general than \(h \)
 * Remove from \(S \) any hypothesis that is more general than another hypothesis in \(S \)

- If \(d \) is a negative example
 - Remove from \(S \) any hypothesis inconsistent with \(d \)
 - For each hypothesis \(g \) in \(G \) that is not consistent with \(d \)
 * Remove \(g \) from \(G \)
 * Add to \(G \) all minimal specializations \(h \) of \(g \) such that
 1. \(h \) is consistent with \(d \), and
 2. some member of \(S \) is more specific than \(h \)
 * Remove from \(G \) any hypothesis that is less general than another hypothesis in \(G \)
The **Candidate-Elimination Algorithm**: Example

Training Examples:

T1: \(\langle\text{Sunny, Warm, Normal, Strong, Warm, Same}\rangle, \text{Yes}\)

T2: \(\langle\text{Sunny, Warm, High, Strong, Warm, Same}\rangle, \text{Yes}\)

T3: \(\langle\text{Rainy, Cold, High, Strong, Warm, Change}\rangle, \text{No}\)

T4: \(\langle\text{Sunny, Warm, High, Strong, Cool, Change}\rangle, \text{Yes}\)
The Candidate-Elimination Algorithm: Remarks

- Version space learned by Candidate-Elimination algorithm will converge towards correct hypothesis provided:
 - no errors in training examples
 - there is a hypothesis in H that describes target concept

In such cases algorithm may converge to empty version space
The Candidate-Elimination Algorithm: Remarks

- Version space learned by Candidate-Elimination algorithm will converge towards correct hypothesis provided:
 - no errors in training examples
 - there is a hypothesis in H that describes target concept
In such cases algorithm may converge to empty version space

- If algorithm can request next training example (e.g. from teacher) can increase speed of convergence by requesting examples that split the version space
 - E.g. T5: $\langle\text{Sunny, Warm, Normal, Light, Warm, Same}\rangle$ satisfies 3 hypotheses in previous example
 * If T5 positive, S generalised, 3 hypotheses eliminated
 * If T5 negative, G specialised, 3 hypotheses eliminated
 - Optimal query strategy is to request examples that exactly split version space – converge in $\lceil\log_2|VS|\rceil$ steps. However, this is not always possible.
The Candidate-Elimination Algorithm: Remarks (cont)

- When using (i.e. not training) a classifier that has not completely converged, new examples may be
 1. classed as positive by all $h \in VS$
 2. classed as negative by all $h \in VS$
 3. classed as positive by some, and negative by other, $h \in VS$

Cases 1 and 2 are unproblematic. In case 3. may want to consider proportion of positive vs. negative classifications (but then a priori probabilities of hypotheses are relevant)
Inductive Bias

As noted, version space learned by **Candidate-Elimination** algorithm will converge towards correct hypothesis provided:

- no errors in training examples
- there is a hypothesis in H that describes target concept

What if no concept in H that describes the target concept?
Inductive Bias

- As noted, version space learned by **Candidate-Elimination** algorithm will converge towards correct hypothesis provided:
 - no errors in training examples
 - there is a hypothesis in H that describes target concept

What if no concept in H that describes the target concept?

- Consider the training data

<table>
<thead>
<tr>
<th>Example</th>
<th>Sky</th>
<th>Temp</th>
<th>Humid</th>
<th>Wind</th>
<th>Water</th>
<th>Forecast</th>
<th>EnjoySport</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sunny</td>
<td>Warm</td>
<td>Normal</td>
<td>Strong</td>
<td>Warm</td>
<td>Same</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>Cloudy</td>
<td>Warm</td>
<td>Normal</td>
<td>Strong</td>
<td>Warm</td>
<td>Same</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>Rainy</td>
<td>Warm</td>
<td>Normal</td>
<td>Strong</td>
<td>Warm</td>
<td>Same</td>
<td>No</td>
</tr>
</tbody>
</table>
Inductive Bias

- As noted, version space learned by **Candidate-Elimination** algorithm will converge towards correct hypothesis provided:
 - no errors in training examples
 - there is a hypothesis in H that describes target concept

What if no concept in H that describes the target concept?

- Consider the training data

<table>
<thead>
<tr>
<th>Example</th>
<th>Sky</th>
<th>Temp</th>
<th>Humid</th>
<th>Wind</th>
<th>Water</th>
<th>Forecast</th>
<th>EnjoySport</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sunny</td>
<td>Warm</td>
<td>Normal</td>
<td>Strong</td>
<td>Warm</td>
<td>Same</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>Cloudy</td>
<td>Warm</td>
<td>Normal</td>
<td>Strong</td>
<td>Warm</td>
<td>Same</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>Rainy</td>
<td>Warm</td>
<td>Normal</td>
<td>Strong</td>
<td>Warm</td>
<td>Same</td>
<td>No</td>
</tr>
</tbody>
</table>

- No hypotheses consistent with 3 examples.
 Most specific hypothesis consistent with Ex 1 and 2 *and representable in* H:

$$\langle ?, \text{Warm, Normal, Strong, Warm, Same} \rangle$$

But this is inconsistent with Ex 3.
Inductive Bias (cont)

- Need more expressive hypothesis representation language.
 E.g. allow disjunctive or negative attribute values:

\[
\begin{align*}
\text{Sky} &= \text{Sunny} \lor \text{Cloudy} \\
\text{Sky} &\not= \text{Rainy}
\end{align*}
\]
An Unbiased Learner

• What about ensuring every concept can be represented in H?
 – Since concepts are subsets of instance space X, want H to be able to represent any set in power set of X
 * for *EnjoySport* there were 96 possible instances
 so, power set contains $2^{96} \approx 10^{28}$ possible target concepts
 * recall biased conjunctive hypothesis space can represent only 973 of these

• Can do this by allowing hypotheses that are arbitrary conjunctions, disjunctions and negations of our earlier hypotheses
 – New problem: concept learning algorithm cannot generalise beyond observed examples!
 * S boundary = disjunction of positive examples – exactly covers observed positive examples
 * G boundary = negation of disjunction of negative examples – exactly rules out observed negative examples
An Unbiased Learner

- Capacity of Candidate-Elimination to generalise lies in its implicit assumption of bias – that target concept can be represented as a conjunction of attribute values

- Fundamental property of inductive inference:

 a learner that makes no a priori assumptions regarding the identity of the target concept has no rational basis for classifying any unseen instances

 I.e. bias-free learning is futile
Inductive Bias, More Formally

- Since all inductive learning involves bias, useful to characterise learning approaches by the type of bias they employ

- Consider
 - concept learning algorithm L
 - instances X, target concept c
 - training examples $D_c = \{\langle x, c(x) \rangle \}$
 - let $L(x_i, D_c)$ denote the classification, positive or negative, assigned to the instance x_i by L after training on data D_c.

Definition:
The **inductive bias** of L is any minimal set of assertions B such that for any target concept c and corresponding training examples D_c

\[
(\forall x_i \in X)[(B \land D_c \land x_i) \vdash L(x_i, D_c)]
\]

where $A \vdash B$ means A logically entails B
Modelling Inductive Systems by Deductive Systems

Inductive system

Training examples → Candidate Elimination Algorithm → Using Hypothesis Space H → Classification of new instance, or "don't know"

New instance →

Classification of new instance, or "don't know"

Equivalent deductive system

Training examples →

Theorem Prover → Classification of new instance, or "don't know"

New instance →

Assertion "H contains the target concept"

Inductive bias made explicit
Summary

- The **version space** with respect to a hypothesis space H and a set of training examples D is the subset of all hypotheses in H **consistent** with all the examples in D.
Summary

- The **version space** with respect to a hypothesis space H and a set of training examples D is the subset of all hypotheses in H **consistent** with all the examples in D.

- The version space may be compactly represented by recording its **general boundary** G and **specific boundary** S.
 Every hypothesis in the version space is guaranteed to lie between G and S by the **version space representation theorem**.
Summary

- The **version space** with respect to a hypothesis space H and a set of training examples D is the subset of all hypotheses in H **consistent** with all the examples in D.

- The version space may be compactly represented by recording its **general boundary** G and **specific boundary** S.
 Every hypothesis in the version space is guaranteed to lie between G and S by the **version space representation theorem**.

- The **Candidate-Elimination algorithm** exploits this theorem by searching for H for the version space by using the examples in training data D to progressively generalise the specific boundary and specialise the general boundary.
Summary

- The **version space** with respect to a hypothesis space H and a set of training examples D is the subset of all hypotheses in H consistent with all the examples in D.

- The version space may be compactly represented by recording its **general boundary** G and **specific boundary** S.
 Every hypothesis in the version space is guaranteed to lie between G and S by the **version space representation theorem**.

- The **Candidate-Elimination algorithm** exploits this theorem by searching for H for the version space by using the examples in training data D to progressively generalise the specific boundary and specialise the general boundary.

- There are certain concepts the **Candidate-Elimination** algorithm cannot learn because of the **bias** of the hypothesis space – every concept must be representable as a conjunction of attribute values.
Summary

• The version space with respect to a hypothesis space H and a set of training examples D is the subset of all hypotheses in H consistent with all the examples in D.

• The version space may be compactly represented by recording its general boundary G and specific boundary S.
 Every hypothesis in the version space is guaranteed to lie between G and S by the version space representation theorem.

• The Candidate-Elimination algorithm exploits this theorem by searching for H for the version space by using the examples in training data D to progressively generalise the specific boundary and specialise the general boundary.

• There are certain concepts the Candidate-Elimination algorithm cannot learn because of the bias of the hypothesis space – every concept must be representable as a conjunction of attribute values.

• In fact, all inductive learning supposes some a priori assumptions about the nature of the target concept, or else there is no basis for generalisation beyond observed examples: bias-free learning is futile.